Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Heliyon ; 10(7): e29044, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601602

RESUMO

Cloud computing has emerged as a transformative force in healthcare and biomedical sciences, offering scalable, on-demand resources for managing vast amounts of data. This review explores the integration of cloud computing within these fields, highlighting its pivotal role in enhancing data management, security, and accessibility. We examine the application of cloud computing in various healthcare domains, including electronic medical records, telemedicine, and personalized patient care, as well as its impact on bioinformatics research, particularly in genomics, proteomics, and metabolomics. The review also addresses the challenges and ethical considerations associated with cloud-based healthcare solutions, such as data privacy and cybersecurity. By providing a comprehensive overview, we aim to assist readers in understanding the significance of cloud computing in modern medical applications and its potential to revolutionize both patient care and biomedical research.

2.
ACS Omega ; 9(8): 9003-9012, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434887

RESUMO

The trends in food packaging technologies are shifting toward utilizing natural and environmentally friendly materials prepared from biopolymers such as kappa carrageenan to replace synthetic polymers. In the current study, varying amounts (0.1, 0.2, and 0.3%) of grapefruit essential oil (GFO) were incorporated in kappa carrageenan-based edible films to improve their physicochemical properties. The developed film samples were characterized for their barrier, mechanical, morphological, optical, thermal, antioxidant, and biodegradable properties. The results obtained showed that the tensile strength of the carrageenan films enhanced significantly from 65.20 ± 4.71 to 98.21 ± 6.35 MPa with the incorporation of GFO in a concentration-dependent manner. FTIR and SEM analysis confirmed the intermolecular bonding between carrageenan and GFO, resulting in the formation of compact films. Incorporating GFO significantly enhanced the thermal resistance of oil-loaded films, as confirmed by TGA, DSC, and DTG analysis. The addition of GFO led to a substantial increase in the radical scavenging activity of the films, as evidenced by the DPPH and ABTS assays. Furthermore, the developed films were biodegradable in soil and seawater environments, indicating their potential as a sustainable alternative to traditional plastics. Findings demonstrated that GFO can be used as a natural antioxidant agent in kappa carrageenan-based films for potential applications in food packaging.

3.
Int J Biol Macromol ; 264(Pt 2): 130463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423442

RESUMO

Sodium tripolyphosphate (STPP), an inorganic and non-toxic polyphosphate, has potential applications as a crosslinking agent in the fabrication of edible films. This study utilized STPP in the development of sodium alginate-chitosan composite films, with a focus on their suitability for food packaging applications. The results indicate that the incorporation of STPP led to an increase in film thickness (from 0.048 ± 0.004 to 0.078 ± 0.008 mm), elongation at break (from 11.50 ± 1.49 % to 15.88 ± 2.14 %), water permeation (from 0.364 ± 0.010 to 0.521 ± 0.021 gmm/(m2h*kPa)), and moisture content (from 25.98 ± 0.20 % to 28.12 ± 0.17 %). In contrast, there was a decrease in tensile strength (from 30.23 ± 2.08 to 25.60 ± 1.22 MPa) and swelling index (from 752.9 ± 17.1 to 533.5 ± 8.9 %). Scanning electron microscopy (SEM) analysis revealed the formation of distinctive needle-like microcrystals with the incorporation of STPP. Fourier-transform infrared spectroscopy (FTIR) analysis indicated intermolecular interactions between STPP and the film-forming biopolymers. The data obtained from Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) demonstrated enhanced thermal stability of STPP-loaded films at elevated temperatures. Furthermore, the films exhibited increased DPPH scavenging activity with the addition of STPP. This study underscores the potential of STPP as a crosslinking agent for the development of composite edible films, suggesting applications in the field of food packaging.


Assuntos
Alginatos , Quitosana , Alginatos/química , Quitosana/química , Resistência à Tração , Polifosfatos , Embalagem de Alimentos
4.
Heliyon ; 10(2): e24210, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304764

RESUMO

Plasticizers are employed to stabilize films by safeguarding their physical stability and avoiding the degradation of the loaded therapeutic drug during processing and storage. In the present study, the plasticizer effect (glycerol) was studied on bioadhesive films based on sodium alginate (SA), carboxymethyl cellulose (CMC) and gelatin (GE) polymers loaded with amphotericin B (AmB). The main objective of the current study was to assess the morphological, mechanical, thermal, optical, and barrier properties of the films as a function of glycerol (Gly) concentration (0.5-1.5 %) using different techniques such as Scanning Electron Microscope (SEM), Texture analyzer (TA), Differential Scanning Calorimeter (DSC), X-Ray Diffraction (XRD), and Fourier Transforms Infrared Spectroscopy (FTIR). The concentration increase of glycerol resulted in an increase in Water Vapor Permeability (WVP) (0.187-0.334), elongation at break (EAB) (0.88-35.48 %), thickness (0.032-0.065 mm) and moisture level (17.5-41.76 %) whereas opacity, tensile strength (TS) (16.81-0.86 MPa), and young's modulus (YM) (0.194-0.002 MPa) values decreased. Glycerol incorporation in the film-Forming solution decreased the brittleness and fragility of the films. Fourier Transform Infrared (FTIR) spectra showed that intermolecular hydrogen bonding occurred between glycerol and polymers in plasticized films compared to control films. Furthermore, molecular docking was applied to predict the binding interactions betweem AmB, CMC, gelatin, SA and glycerol, which further endorsed the stabilizing effects of glycerol in the complex formation between AmB, CMC, SA, and gelatin. The Findings of the current study demonstrated that this polymeric blend could be used to successfully prepare bioadhesive films with glycerol as a plasticizer.

5.
Int J Hypertens ; 2024: 2430147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410720

RESUMO

The lipid-based drug delivery system (LBDDS) is a well-established technique that is anticipated to bring about comprehensive transformations in the pharmaceutical field, impacting the management and administration of drugs, as well as treatment and diagnosis. Various LBDDSs verified to be an efficacious mechanism for monitoring hypertension systems are SEDDS (self-nano emulsifying drug delivery), nanoemulsion, microemulsions, vesicular systems (transferosomes and liposomes), and solid lipid nanoparticles. LBDDSs overcome the shortcomings that are associated with antihypertensive agents because around fifty percent of the antihypertensive agents experience a few drawbacks including short half-life because of hepatic first-pass metabolism, poor aqueous solubility, low permeation rate, and undesirable side effects. This review emphasizes antihypertensive agents that were encapsulated into the lipid carrier to improve their poor oral bioavailability. Incorporating cutting-edge technologies such as nanotechnology and targeted drug delivery, LBDDS holds promise in addressing the multifactorial nature of hypertension. By fine-tuning drug release profiles and enhancing drug uptake at specific sites, LBDDS can potentially target renin-angiotensin-aldosterone system components, sympathetic nervous system pathways, and endothelial dysfunction, all of which play crucial roles in hypertension pathophysiology. The future of hypertension management using LBDDS is promising, with ongoing reviews focusing on precision medicine approaches, improved biocompatibility, and reduced toxicity. As we delve deeper into understanding the intricate mechanisms underlying hypertension, LBDDS offers a pathway to develop next-generation antihypertensive therapies that are safer, more effective, and tailored to individual patient needs.

6.
Food Sci Nutr ; 12(2): 1056-1066, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370062

RESUMO

Boswellia sacra and its derivatives exhibit notable bioactive properties, which have been the subject of extensive scientific research; however, their potential applications in food packaging remain largely untapped. In the current study, cellulose, sodium alginate, and gelatin composite edible films were fabricated with the addition of different concentrations (0.2% and 0.3%) of the ethanolic fraction of Boswellia sacra oleo gum resin (BSOR). The resultant films were examined for their physical, chemical, mechanical, barrier, optical, and antioxidant properties. Moreover, the films were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) to study the impact of incorporating BSOR on the morphological, crystalline, and chemical properties of the films. The addition of BSOR increased the film thickness (0.026-0.08 mm), water vapor permeability (0.210-0.619 (g.mm)/(m2.h.kPa), and the intensity of the yellow color (3.01-7.20) while reducing the values of both tensile strength (6.67-1.03 MPa) and elongation at break (83.50%-48.81%). SEM and FTIR analysis confirmed the interaction between the BSOR and film-forming components. The antioxidant properties of the edible films were significantly increased with the addition of BSOR. The comprehensive findings of the study demonstrated that BSOR possesses the potential to serve as an efficient natural antioxidant agent in the fabrication of edible films.

7.
Heliyon ; 10(3): e25501, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371972

RESUMO

This research focused on the development of films based on pectin and xanthan gum composite loaded with different concentrations of grapefruit essential oil (GFO). The fabricated films were characterized to assess the effect of GFO on the structural, mechanical, barrier, chemical, and antioxidant properties. The addition of GFO enhanced the functional properties of the films, as confirmed by FTIR analysis showing molecular interactions within the film matrix. SEM observations revealed that films with higher GFO content had a smoother, more compact structure with uniform oil distribution. Films loaded with oil demonstrated enhanced water resistance, as their decreased permeability ranged from 0.733 ± 0.009 to 0.561 ± 0.020 (g mm)/(m2.h.kPa). Additionally, these films showed a notable increase in tensile strength, ranging from 2.91 ± 0.19 to 8.55 ± 0.62 MPa. However, the addition of oil led to a reduction in the elongation at break of the films, which decreased from 52.84 ± 3.41 % to 12.68 ± 1.52 %, and a decline in transparency from 87.57 ± 0.65 % to 76.18 ± 1.12 %. Fabricated films exhibited enhanced antioxidant properties, as evidenced by increased DPPH• and ABTS•+ radical scavenging activities with the addition of GFO. The findings of the current study suggest that GFO is an effective natural additive for enhancing the physiochemical properties of pectin and xanthan gum-based films, making them more suitable for food packaging applications.

8.
Int J Biol Macromol ; 261(Pt 1): 129698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272421

RESUMO

The present study aimed to develop food packaging films by using a combination of pectin (PE) and sodium alginate (SA) enriched with Acetyl-11-keto-beta-boswellic acid (AKBA) as a functional or active ingredient. The fabricated films underwent comprehensive evaluation of their morphological, chemical, mechanical, barrier, optical, thermal, antioxidant, and antimicrobial properties. SEM and FTIR analysis showed that AKBA had good compatibility with film-forming components. The AKBA-loaded film samples exhibited a decrease in their barrier properties and tensile strength, but enhancements in both elongation at break and thickness values was observed. With the addition of AKBA, a significant increase (p < 0.05) in the ultraviolet barrier properties of the films and total colour variation (ΔE) was observed. TGA analysis of the films unveiled an improvement in thermal resistance with the incorporation of AKBA. Moreover, the films loaded with AKBA exhibited potent antioxidant activity in the ABTS and DPPH assay methods. Disk diffusion analysis showed the antimicrobial activity of AKBA-loaded films against P. aeruginosa, highlighting the potential of AKBA as a natural antimicrobial agent for the safety of food products. The results demonstrate the practical application of PE and SA active films loaded with AKBA, particularly within the food packaging industry.


Assuntos
Anti-Infecciosos , Triterpenos , Alginatos/química , Pectinas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Triterpenos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Embalagem de Alimentos/métodos
9.
Heliyon ; 10(1): e23790, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205318

RESUMO

In the past few decades, the medicinal properties of plants and their effects on the human immune system are being studied extensively. Plants are an incredible source of traditional medicines that help cure various diseases, including altered immune mechanisms and are economical and benign compared to allopathic medicines. Reported data in written documents such as Traditional Chinese medicine, Indian Ayurvedic medicine support the supplementation of botanicals for immune defense reactions in the body and can lead to safe and effective immunity responses. Additionally, some botanicals are well-identified as magical herbal remedies because they act upon the pathogen directly and help boost the immunity of the host. Chemical compounds, also known as phytochemicals, obtained from these botanicals looked promising due to their effects on the human immune system by modulating the lymphocytes which subsequently reduce the chances of getting infected. This paper summarises most documented phytochemicals and how they act on the immune system, their properties and possible mechanisms, screening conventions, formulation guidelines, comparison with synthetic immunity-enhancers, marketed immunity-boosting products, and immune-booster role in the ongoing ghastly corona virus wave. However, it focuses mainly on plant metabolites as immunomodulators. In addition, it also sheds light on the current advancements and future possibilities in this field. From this thorough study, it can be stated that the plant-based secondary metabolites contribute significantly to immunity building and could prove to be valuable medicaments for the design and development of novel immunomodulators even for a pandemic like COVID-19.

10.
Int J Biol Macromol ; 254(Pt 3): 128045, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956812

RESUMO

In the current study, sodium caseinate and chitosan-based composite edible films were developed with the incorporation of black pepper (Piper nigrum) essential oil (BPO) in various concentrations (0.05, 0.1 and 0.15 %) for potential food packaging applications. The chemical composition of BPO was determined using GCMS and the major compound detected were ß-caryophyllene, limonene, ß-phellandren, pinene, copaene and α-humulene. The addition of BPO resulted in an increase in the thickness, EAB, WVP, moisture content and swelling index values of the films; however, the TS and water solubility decreased. The inclusion of BPO led to a substantial enhancement in the DPPH and ABTS radical scavenging capabilities of the edible films. SEM micrographs demonstrated intermolecular interaction between BPO, sodium caseinate, and chitosan. FTIR spectra confirmed the interaction of the functional groups of the polymers and BPO. The incorporation of the BPO increased the crystallinity of the films. Moreover, the thermal analysis including TGA, DSC and DTG demonstrated an increase in the thermal stability of the edible films with the addition of the BPO. These findings demonstrated that sodium caseinate and chitosan composite based edible films loaded with BPO can be used as sustainable active food packaging material.


Assuntos
Quitosana , Filmes Comestíveis , Óleos Voláteis , Piper nigrum , Quitosana/química , Antioxidantes/química , Caseínas , Embalagem de Alimentos/métodos
11.
Scientifica (Cairo) ; 2023: 6640103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928749

RESUMO

The pharmaceutical sector has made considerable strides recently, emphasizing improving drug delivery methods to increase the bioavailability of various drugs. When used as a medication delivery method, nanoemulsions have multiple benefits. Their small droplet size, which is generally between 20 and 200 nanometers, creates a significant interfacial area for drug dissolution, improving the solubility and bioavailability of drugs that are weakly water-soluble. Additionally, nanoemulsions are a flexible platform for drug administration across various therapeutic areas since they can encapsulate hydrophilic and hydrophobic medicines. Nanoemulsion can be formulated in multiple dosage forms, for example, gels, creams, foams, aerosols, and sprays by using low-cost standard operative processes and also be taken orally, topically, topically, intravenously, intrapulmonary, intranasally, and intraocularly. The article explores nanoemulsion formulation and production methods, emphasizing the role of surfactants and cosurfactants in creating stable formulations. In order to customize nanoemulsions to particular medication delivery requirements, the choice of components and production techniques is crucial in assuring the stability and efficacy of the finished product. Nanoemulsions are a cutting-edge technology with a lot of potential for improving medication bioavailability in a variety of therapeutic contexts. They are a useful tool in the creation of innovative pharmaceutical formulations due to their capacity to enhance drug solubility, stability, and delivery. Nanoemulsions are positioned to play a crucial role in boosting medication delivery and enhancing patient outcomes as this field of study continues to advance.

12.
Gels ; 9(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37504390

RESUMO

The essential oil extracted from Melissa officinalis (MOEO) exhibits a wide range of therapeutic properties, including antioxidant, antibacterial, and antifungal activities. The current research aimed to analyze the mechanical, barrier, chemical, and antioxidant properties of pectin and collagen-based films. Hydrogel-based films loaded with varying concentrations of MOEO (0.1%, 0.15%, and 0.2%) were prepared by solvent-casting method, and their physicochemical as well as antioxidant properties were examined. GC-MS analysis revealed the presence of major components in MOEO such as 2,6-octadienal, 3,7-dimethyl, citral, caryophyllene, geranyl acetate, caryophyllene oxide, citronellal, and linalool. Fourier transform infrared (FTIR) results revealed the interaction between components of the essential oil and polymer matrix. Scanning electron microscopy (SEM) revealed that films loaded with the highest concentration (0.2%) of MOEO showed more homogeneous structure with fewer particles, cracks, and pores as compared to control film sample. MOEO-incorporated films exhibited higher elongation at break (EAB) (30.24-36.29%) and thickness (0.068-0.073 mm); however, they displayed lower tensile strength (TS) (3.48-1.25 MPa) and transparency (87.30-82.80%). MOEO-loaded films demonstrated superior barrier properties against water vapors. According to the results, the incorporation of MOEO into pectin-collagen composite hydrogel-based films resulted in higher antioxidant properties, indicating that MOEO has the potential to be used in active food packaging material for potential applications.

13.
Gels ; 9(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102949

RESUMO

Several studies have reported the advantages of incorporating essential oils in hydrogel-based films for improving their physiochemical and antioxidant attributes. Cinnamon essential oil (CEO) has great potential in industrial and medicinal applications as an antimicrobial and antioxidant agent. The present study aimed to develop sodium alginate (SA) and acacia gum (AG) hydrogel-based films loaded with CEO. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and texture analysis (TA) were performed to analyze the structural, crystalline, chemical, thermal, and mechanical behaviour of the edible films that were loaded with CEO. Moreover, the transparency, thickness, barrier, thermal, and color parameters of the prepared hydrogel-based films loaded with CEO were also assessed. The study revealed that as the concentration of oil in the films was raised, the thickness and elongation at break (EAB) increased, while transparency, tensile strength (TS), water vapor permeability (WVP), and moisture content (MC) decreased. As the concentration of CEO increased, the hydrogel-based films demonstrated a significant improvement in their antioxidant properties. Incorporating CEO into the SA-AG composite edible films presents a promising strategy for producing hydrogel-based films with the potential to serve as food packaging materials.

14.
Biomimetics (Basel) ; 8(2)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37092424

RESUMO

Gelatin (bovine/porcine)-based edible films are considered as an excellent carrier for essential oils (EOs) to preserve food quality and extend their shelf life. Spearmint essential oil (SEO) is known for its potential antioxidant and antimicrobial effects; nevertheless, its food applications are limited due to the volatile nature of its active components. Thus, edible films loaded with essential oil can be an alternative to synthetic preservatives to improve their food applications. In the present study, the effect of SEO addition was investigated on the physicochemical properties of bovine and porcine gelatin films, and antioxidant activity was assessed. GCMS (Gas chromatography mass spectrometry) analysis revealed the presence of carvone (55%) and limonene (25.3%) as major components. The incorporation of SEO into the films decreased the opacity, moisture content, water solubility, and elongation at break of bovine and porcine gelatin films. However, with the addition of EO, the thickness and water vapor permeability of bovine and porcine-based gelatin films increased. Moreover, the addition of SEO increased the tensile strength (TS) of the porcine-based film, whereas bovine samples demonstrated a decrease in tensile strength. XRD (X-ray diffraction) findings revealed a decrease in the percentage crystallinity of both types of gelatin films. SEM (scanning electron microscope) results showed the changes in the morphology of films after the addition of SEO. Antioxidant properties significantly increased with the incorporation of EO (p < 0.05) when compared with control films. Therefore, the addition of SEO to gelatin-based edible films could be an effective approach to prepare an active food packaging material to prevent food oxidation.

15.
Polymers (Basel) ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050337

RESUMO

The quality and safety of food products greatly depend on the physiochemical properties of the food packaging material. There is an increasing trend in the utilization of protein-based biopolymers for the preparation of edible films and coating due to their film-forming properties. Various studies have reported the preparation of protein-based edible films with desirable mechanical and barrier properties. The mechanical attributes of the protein-based food packaging materials can be enhanced by incorporating various components in the film composition such as plasticizers, surfactants, crosslinkers, and various bioactive compounds, including antimicrobial and antioxidant compounds. This review article summarizes the recent updates and perspective on the mechanical attributes such as Tensile Strength (TS), Elongation at Break (EAB), and Young's Modulus (YM) of edible films based on different proteins from plants and animal sources. Moreover, the effects of composite materials such as other biopolymers, bioactive compounds, essential oils, and plasticizers on the mechanical properties of protein-based edible films are also discussed.

16.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904456

RESUMO

Aqueous extract of fruit obtained from Ficus racemosa enriched with phenolic components was used for the first time to fabricate chitosan (CS) and sodium alginate (SA)-based edible films. The edible films supplemented with Ficus fruit aqueous extract (FFE) were characterized physiochemically (using Fourier transform infrared spectroscopy (FT-IR), Texture analyser (TA), Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and colourimeter) and biologically (using antioxidant assays). CS-SA-FFA films showed high thermal stability and high antioxidant properties. The addition of FFA into CS-SA film decreased transparency, crystallinity, tensile strength (TS), and water vapour permeability (WVP) but ameliorate moisture content (MC), elongation at break (EAB) and film thickness. The overall increase in thermal stability and antioxidant property of CS-SA-FFA films demonstrated that FFA could be alternatively used as a potent natural plant-based extract for the development of food packaging material with improved physicochemical and antioxidant properties.

17.
Gels ; 9(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36975682

RESUMO

The aim of this study was to examine the effect of Sage (Salvia sclarea) essential oil (SEO) on the physiochemical and antioxidant properties of sodium alginate (SA) and casein (CA) based films. Thermal, mechanical, optical, structural, chemical, crystalline, and barrier properties were examined using TGA, texture analyzer, colorimeter, SEM, FTIR, and XRD. Chemical compounds of the SEO were identified via GC-MS, the most important of which were linalyl acetate (43.32%) and linalool (28.51%). The results showed that incorporating SEO caused a significant decrease in tensile strength (1.022-0.140 Mpa), elongation at break (28.2-14.6%), moisture content (25.04-14.7%) and transparency (86.1-56.2%); however, WVP (0.427-0.667 × 10-12 g·cm/cm2·s·Pa) increased. SEM analysis showed that the incorporation of SEO increased the homogeneousness of films. TGA analysis showed that SEO-loaded films showed better thermal stability than others. FTIR analysis revealed the compatibility between the components of the films. Furthermore, increasing the concentration of SEO increased the antioxidant activity of the films. Thus, the present film shows a potential application in the food packaging industry.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36734912

RESUMO

Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.


Assuntos
Antineoplásicos , Ciclodextrinas , Nanopartículas , Humanos , Ciclodextrinas/química , Lipossomos , Micelas , Nanopartículas/química , Solubilidade
19.
Environ Sci Pollut Res Int ; 30(14): 39546-39557, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36790717

RESUMO

Medicinal plants are being used from time immemorial for their therapeutic benefits and have immense value in the therapy of neurodegenerative disorders. One of the most important neurological disorders is Alzheimer's disease (AD) which is a major contributor to dementia and is accompanied by abundant oxidative stress in the brain tissue. A critical pathway to target the increased oxidative stress is to administer agents with antioxidant potential. Despite currently available clinical treatments to treat AD such as cholinesterase inhibitors or NMDA antagonists which address only the symptoms and cannot hamper disease progression, no efficient available clinical treatment can break the vicious cycle of oxidative stress and neurodegeneration till date. The main objective of presenting this review is that traditional Chinese medicine (TCM) acts as a promising candidate in breaking this vicious cycle and improves the quality of life of the debilitating patients. The active constituents of various herbs in TCM including Angelica sinensis, Radix polygalae, Polygala tenuifolia, and members of the Lamiaceae family have acquired experience of managing oxidative stress as indicated in the review for more than a thousand years now, and the preclinical and clinical evidence of their therapeutic potential has been highlighted in the review. Most importantly, Chinese herbs provide a multiple-target approach rather than a single-target approach and thus can target multiple pathways involved in AD at once. The Chinese herbs can definitely untangle the issues in the current therapy regimen of AD.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Neuroproteção , Qualidade de Vida , Estresse Oxidativo
20.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673455

RESUMO

In the present work, ginger essential oil (GEO) loaded chitosan (CS) based films incorporated with varying concentrations of gelatin (GE) were fabricated and dried at different conditions (25 °C and 45 °C). The physio-chemical, mechanical and antioxidant potential of the films were determined. Films dried at 45 °C showed better physical attributes and less thickness, swelling degree (SD), moisture content, water vapor permeability (WVP), more transparency, and better mechanical characteristics. Fourier transform infrared spectroscopy (FTIR) revealed the chemical composition and interaction between the functional groups of the film components. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) findings revealed that samples dried at 45 °C had more crystalline structure, were thermally stable, and smoother. Antioxidant results showed that films dried at low temperature showed comparatively more (p < 0.0001) antioxidant activity. Additionally, an increase in gelatin concentration improved the tensile strength and swelling factor (p < 0.05), however, had no significant impact on other parameters. The overall results suggested better characteristics of GEO-loaded CS-GE based edible films when dried at 45 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...